Shake slice knots

Mark Powell

Durham University

Based on joint work with:

Peter Feller, Allison N. Miller, Matthias Nagel,

Patrick Orson, and Arunima Ray.

A knot is a submanifold of S^3 that is homeomorphic to S^1 .

Let K be a knot and let $n \in \mathbb{Z}$. The *n*-trace $X_n(K)$ is the 4-manifold

$$X_n(K) = D^4 \cup_{\nu K \sim S^1 \times D^2} D^2 \times D^2$$

with $S^1 \times D^2$ identified with an *n*-framed regular neighbourhood of $K \subset S^3 = \partial D^4$.

Note that

• $X_n(K)$ is a compact, simply connected 4-manifold;

•
$$X_n(K) \simeq S^2$$
; and

• $\partial X_n(K) = S_n^3(K)$, the result of *n*-framed surgery on S^3 along K.

Question

For which K and which n is a generator of $\pi_2(X_n(K)) \cong \mathbb{Z}$ represented by a locally flat embedded 2-sphere?

Given a knot K and $n \in \mathbb{Z}$ for which this question has an affirmative answer, we say that K is *n*-shake slice.

Equivalently, some "*n*-shaking" of K bounds a locally flat planar surface in D^4 .

A knot K in S^3 is *slice* if there is a locally flat embedded disc $D^2 \hookrightarrow D^4$ with boundary K.

Knots form a monoid under connected sum, knots modulo slice knots forms a group, the knot concordance group.

Partial Answer If K is a slice knot, it is n-shake slice for every $n \in \mathbb{Z}$. On the other hand, corollaries to the theorem that I will explain include:

Corollary (FMNOPR)

For every $n \neq 0$ there exist infinitely many knots that are n-shake slice but not slice. These knots may be chosen to be distinct in concordance.

It is unknown whether every 0-shake slice knot is slice.

Moreover the answer depends on n.

Corollary (FMNOPR)

If m does not divide n then there exist infinitely many knots which are n-shake slice but not m-shake slice. These knots may be chosen to be distinct in concordance. I want to discuss a refinement of the question that I can answer.

Question

For which K and which n is a generator of $\pi_2(X_n(K)) \cong \mathbb{Z}$ represented by a locally flat embedded 2-sphere S such that the complement $X_n(K) \setminus S$ has abelian fundamental group?

Such a *K* is called \mathbb{Z}/n -shake slice.

Note in this case $\pi_1(X_n(K) \setminus S) \cong \mathbb{Z}/n$.

To explain the answer, let me recall some elementary knot invariants.

A Seifert surface for a knot K is a submanifold of S^3 homeomorphic to a connected, compact, orientable surface with one boundary component, such that the boundary equals K.

Theorem (Seifert)

Every knot bounds a Seifert surface.

Given a Seifert surface F for a knot K, the Seifert form

 $V \colon H_1(F;\mathbb{Z}) \times H_1(F;\mathbb{Z}) \to \mathbb{Z}$

can be computed on homology classes represented by simple closed curves $\gamma, \delta \subset F$ by the linking number

 $\ell k(\gamma, \delta^+)$

where δ^+ is a push-off of δ normal to F.

Can obtain knot invariants from V. Represent V by a $2g \times 2g$ matrix A.

1. The Alexander polynomial is

$$\Delta_{\mathcal{K}}(t) := \det(tA - A^{\mathcal{T}}) \in \mathbb{Z}[t, t^{-1}].$$

2. The Levine-Tristram signature at $z \in S^1$ is sign $((1-z)A + (\overline{1-z})A^T) \in \mathbb{Z}$.

3. The Arf invariant $\operatorname{Arf}(K) \in \mathbb{Z}/2$ is determined by $\Delta_{K}(-1) = \det(A + A^{T}) \equiv \pm(1 + 4\operatorname{Arf}(K)) \mod 8.$ A knot is \mathbb{Z} -slice if it is slice via a locally flat disc D with $\pi_1(D^4 \setminus D) \cong \mathbb{Z}$.

Theorem (Freedman-Quinn) A knot K is \mathbb{Z} -slice if and only if $\Delta_K(t) = 1$.

This extends fairly easily to a 0-shake slice analogue.

Theorem (Folklore, FNMOPR) A knot K is \mathbb{Z} -shake slice if and only if $\Delta_K(t) = 1$.

Is there a version of this result for $n \neq 0$?

Theorem (Boyer, FNMOPR)

A knot K is 1-shake slice if and only if Arf(K) = 0.

Proof.

- S³₁(K) is a ℤHS³ so bounds a contractible topological 4-manifold W (Freedman).
- ▶ Interior connected sum $X := X \# \mathbb{CP}^2$ satisfies $\pi_1(X) = \{1\}$, $\partial X = S_1^3(K)$ and $Q_X = \langle 1 \rangle$.
- Boyer classified simply connected 4-manifolds with a fixed boundary: X ≅ X₁(K) if and only if
 0 = ks(X) = µ(S₁³(K)) = Arf(K) (Gonzalez-Acuña).

• Image of $\mathbb{CP}^1 \subset \mathbb{CP}^2$ is the desired embedded sphere in $X_1(K)$.

The main theorem of this talk is a generalisation to all $n \in \mathbb{Z}$.

Theorem (FMNOPR)

A knot $K \subseteq S^3$ is \mathbb{Z}/n -shake slice if and only if:

(i) $H_1(S_n^3(K); \mathbb{Z}[\mathbb{Z}/n]) = 0$; or equivalently for $n \neq 0$,

$$\prod_{\{\xi \mid \xi^n = 1\}} \Delta_{\mathcal{K}}(\xi) = 1.$$

(ii) Arf(K) = 0; and
(iii) σ_K(ξ) = 0 for every ξ ∈ S¹ such that ξⁿ = 1.
Moreover, any two Z/n-shake slicing spheres are ambiently isotopic rel. boundary in X_n(K).

Let $D^2 \rightarrow D_n \rightarrow S^2$ be the fibre bundle with Euler number *n*.

Proposition

A knot K is \mathbb{Z}/n -shake slice if and only if $S_n^3(K)$ is homology cobordant to L(n, 1) via a cobordism V with $\pi_1(V) \cong \mathbb{Z}/n$, such that $V \cup D_n \cong X_n(K)$.

Proof.

If K is \mathbb{Z}/n -shake slice then the exterior of the embedded 2-sphere is such a homology cobordism V.

If such a V exists, the image in $X_n(K)$ of the zero section of D_n is a locally flat 2-sphere as required.

Proposition

A knot K is \mathbb{Z}/n -shake slice if and only if $S_n^3(K)$ is homology cobordant to L(n, 1) via a cobordism V with $\pi_1(V) \cong \mathbb{Z}/n$, such that $V \cup D_n \cong X_n(K)$.

Steps in the proof of main theorem, only if direction:

- Suppose $(V; S_n^3(K), L(n, 1))$ exists as in the Proposition.
- ► Homology computation with V shows that H₁(S³_n(K); ℤ[ℤ/n]) = 0.
- Let $\xi = e^{2\pi i/n}$. Use *G*-signature theorem to show

$$\sigma_{\mathcal{K}}(\xi^k) = \operatorname{sign}(Q(\widetilde{W})_k) - \operatorname{sign}(Q_W),$$

where $Q(\widetilde{W})_k$ is intersection pairing of \mathbb{Z}/n -cover of cobordism (W^4 ; $S_n^3(K), L(n, 1)$), restricted to ξ^k -eigenspace: use W = V to see $\sigma_K(\xi^k) = 0$.

Steps in the proof of main theorem, only if direction:

- The Arf invariant obstructs the existence of a bordism (V; S³_n(K), L(n, 1)) over ℤ/n for n even, so Arf(K) = 0.
- The Arf invariant of K can be identified with the Kirby-Siebenmann invariant of V ∪ D_n when is n odd. V ∪ D_n ≅ X_n(K) smooth implies ks(X_n(K)) = 0.

Steps in the proof of main theorem, if direction:

Use bordism theory and Arf(K) = 0 (n even) to construct a degree one normal bordism

 $F: (W; S_n^3(K), L(n,1)) \to (L(n,1) \times I; L(n,1), L(n,1)).$

H₁(S³_n(K); ℤ[ℤ/n]) = 0 implies Q(W) determined an element of L^s₄(ℤ[ℤ/n]), simple surgery obstruction group = Witt group of quadratic forms.

▶ $L_4^s(\mathbb{Z}[\mathbb{Z}/n]) \cong \mathbb{Z}^{r(n)}$ where

$$r(n) = \begin{cases} (n+1)/2 & n \text{ odd} \\ (n+2)/2 & n \text{ even.} \end{cases}$$

These \mathbb{Z} summands are identified with $\sigma_{\xi^k}(K)$, so vanish.

Steps in the proof of main theorem, if direction:

- Perform surgery on W: Z/n is a good group, represent ker π₂(F) by locally flat embedded S²s. cl(W \ S² × D²) ∪ D³ × S¹.
- Obtain homology cobordism (V; $S_n^3(K), L(n, 1)$) with $\pi_1(V) \cong \mathbb{Z}/n$.
- V ∪ D_n ≃ X_n(K) by Boyer's classification if n even, and the same holds for n odd if and only if ks(V ∪ D_n) = 0. But ks(V ∪ D_n) = Arf(K) = 0.
- ► Zero section of D_n maps to locally flat embedded S^2 as required.

Corollary (FMNOPR)

For every $n \neq 0$ there exist infinitely many knots that are n-shake slice but not slice. These knots may be chosen to be distinct in concordance.

Proof.

The knots $K_{n,j} := C_{n,1}(T_{2,8j+1})$ are all \mathbb{Z}/n -shake slice by our theorem, since for every ω with $\omega^n = 1$:

$$\sigma_{\omega}(\mathcal{C}_{n,1}(J_j)) = \sigma_{\omega^n}(J_j) = \sigma_1(J_j) = 0$$

$$\Delta_{C_{n,1}(J_j)}(\omega) = \Delta_{J_j}(\omega^n) = \Delta_{J_j}(1) = 1$$

Also $\operatorname{Arf}(C_{n,1}(J_j)) = n \operatorname{Arf}(J_j)$.

With $J_j = T_{2,8j+1}$, $Arf(J_j) = 0$ so \mathbb{Z}/n -shake slice but signature functions are distinct, so non-slice and mutually non-concordant.

Corollary (FMNOPR)

If m does not divide n then there exist infinitely many knots which are n-shake slice but not m-shake slice. These knots may be chosen to be distinct in concordance.

Proof.

The knots $J_j := C_{n,1}(T_{2,8(N+j)+1})$ work, $j \ge 0$, for N sufficiently large so that $\sigma_{T_{2,8N+1}}(e^{2\pi i k/q}) \ne 0$ for q a prime power dividing m but not n, and $k = 1, \ldots, q - 1$.

On the other hand:

Corollary (FMNOPR)

If $m \mid n$ and K is \mathbb{Z}/n -shake slice, then K is \mathbb{Z}/m -shake slice.

Some more corollaries:

Corollary (FMNOPR)

For every $n \neq 0$ there exist infinitely many topological concordance classes of knots that are n-shake slice but not smoothly n-shake slice.

Corollary (FMNOPR)

There exist knots that are \mathbb{Z}/n -shake slice for infinitely many $n \in \mathbb{Z}$, but are not slice.

Corollary (FMNOPR)

For each odd $n \in \mathbb{N}$, there exists K such that $S_n^3(K)$ and $S_n^3(U)$ are topologically homology cobordant but K is not n-shake slice.

Corollary

A knot is (± 1) -shake slice if and only if it is $\mathbb{Z}/1$ -shake slice. For all other n, there exists an n-shake slice knot that is not \mathbb{Z}/n -shake slice.

Corollary

If a knot K is n-shake slice for some integer n, then it is (± 1) -shake slice.