Shake slice knots

Mark Powell

Durham University

Based on joint work with:
 Peter Feller, Allison N. Miller, Matthias Nagel,
 Patrick Orson, and Arunima Ray.

A knot is a submanifold of S^{3} that is homeomorphic to S^{1}.
Let K be a knot and let $n \in \mathbb{Z}$. The n-trace $X_{n}(K)$ is the 4-manifold

$$
X_{n}(K)=D^{4} \cup_{\nu K \sim S^{1} \times D^{2}} D^{2} \times D^{2}
$$

with $S^{1} \times D^{2}$ identified with an n-framed regular neighbourhood of $K \subset S^{3}=\partial D^{4}$.

Note that

- $X_{n}(K)$ is a compact, simply connected 4-manifold;
- $X_{n}(K) \simeq S^{2}$; and
- $\partial X_{n}(K)=S_{n}^{3}(K)$, the result of n-framed surgery on S^{3} along K.

Question

For which K and which n is a generator of $\pi_{2}\left(X_{n}(K)\right) \cong \mathbb{Z}$ represented by a locally flat embedded 2-sphere?

Given a knot K and $n \in \mathbb{Z}$ for which this question has an affirmative answer, we say that K is n-shake slice.

Equivalently, some " n-shaking" of K bounds a locally flat planar surface in D^{4}.

A knot K in S^{3} is slice if there is a locally flat embedded disc $D^{2} \hookrightarrow D^{4}$ with boundary K.

Knots form a monoid under connected sum, knots modulo slice knots forms a group, the knot concordance group.

Partial Answer

If K is a slice knot, it is n-shake slice for every $n \in \mathbb{Z}$.

On the other hand, corollaries to the theorem that I will explain include:

Corollary (FMNOPR)
For every $n \neq 0$ there exist infinitely many knots that are n-shake slice but not slice. These knots may be chosen to be distinct in concordance.

It is unknown whether every 0 -shake slice knot is slice.

Moreover the answer depends on n.

Corollary (FMNOPR)

If m does not divide n then there exist infinitely many knots which are n-shake slice but not m-shake slice. These knots may be chosen to be distinct in concordance.

I want to discuss a refinement of the question that I can answer.

Question
For which K and which n is a generator of $\pi_{2}\left(X_{n}(K)\right) \cong \mathbb{Z}$ represented by a locally flat embedded 2-sphere S such that the complement $X_{n}(K) \backslash S$ has abelian fundamental group?

Such a K is called \mathbb{Z} / n-shake slice.
Note in this case $\pi_{1}\left(X_{n}(K) \backslash S\right) \cong \mathbb{Z} / n$.

To explain the answer, let me recall some elementary knot invariants.

A Seifert surface for a knot K is a submanifold of S^{3} homeomorphic to a connected, compact, orientable surface with one boundary component, such that the boundary equals K.

Theorem (Seifert)

Every knot bounds a Seifert surface.
Given a Seifert surface F for a knot K, the Seifert form

$$
V: H_{1}(F ; \mathbb{Z}) \times H_{1}(F ; \mathbb{Z}) \rightarrow \mathbb{Z}
$$

can be computed on homology classes represented by simple closed curves $\gamma, \delta \subset F$ by the linking number

$$
\ell k\left(\gamma, \delta^{+}\right)
$$

where δ^{+}is a push-off of δ normal to F.

Can obtain knot invariants from V. Represent V by a $2 g \times 2 g$ matrix A.

1. The Alexander polynomial is

$$
\Delta_{K}(t):=\operatorname{det}\left(t A-A^{T}\right) \in \mathbb{Z}\left[t, t^{-1}\right] .
$$

2. The Levine-Tristram signature at $z \in S^{1}$ is

$$
\operatorname{sign}\left((1-z) A+(\overline{1-z}) A^{T}\right) \in \mathbb{Z}
$$

3. The Arf invariant $\operatorname{Arf}(K) \in \mathbb{Z} / 2$ is determined by

$$
\Delta_{K}(-1)=\operatorname{det}\left(A+A^{T}\right) \equiv \pm(1+4 \operatorname{Arf}(K)) \quad \bmod 8
$$

A knot is \mathbb{Z}-slice if it is slice via a locally flat disc D with $\pi_{1}\left(D^{4} \backslash D\right) \cong \mathbb{Z}$.

Theorem (Freedman-Quinn)
A knot K is \mathbb{Z}-slice if and only if $\Delta_{K}(t)=1$.

This extends fairly easily to a 0-shake slice analogue.

Theorem (Folklore, FNMOPR)
A knot K is \mathbb{Z}-shake slice if and only if $\Delta_{K}(t)=1$.

Is there a version of this result for $n \neq 0$?

Theorem (Boyer, FNMOPR)
A knot K is 1-shake slice if and only if $\operatorname{Arf}(K)=0$.

Proof.

- $S_{1}^{3}(K)$ is a $\mathbb{Z} H S^{3}$ so bounds a contractible topological 4-manifold W (Freedman).
- Interior connected sum $X:=X \# \mathbb{C P}^{2}$ satisfies $\pi_{1}(X)=\{1\}$, $\partial X=S_{1}^{3}(K)$ and $Q_{X}=\langle 1\rangle$.
- Boyer classified simply connected 4-manifolds with a fixed boundary: $X \cong X_{1}(K)$ if and only if $0=\mathrm{ks}(X)=\mu\left(S_{1}^{3}(K)\right)=\operatorname{Arf}(K)($ Gonzalez-Acuña).
- Image of $\mathbb{C P}^{1} \subset \mathbb{C P}^{2}$ is the desired embedded sphere in $X_{1}(K)$.

The main theorem of this talk is a generalisation to all $n \in \mathbb{Z}$.

Theorem (FMNOPR)

A knot $K \subseteq S^{3}$ is \mathbb{Z} / n-shake slice if and only if:
(i) $H_{1}\left(S_{n}^{3}(K) ; \mathbb{Z}[\mathbb{Z} / n]\right)=0$; or equivalently for $n \neq 0$,

$$
\prod_{\left\{\xi \mid \xi^{n}=1\right\}} \Delta_{K}(\xi)=1 .
$$

(ii) $\operatorname{Arf}(K)=0$; and
(iii) $\sigma_{K}(\xi)=0$ for every $\xi \in S^{1}$ such that $\xi^{n}=1$.

Moreover, any two \mathbb{Z} / n-shake slicing spheres are ambiently isotopic rel. boundary in $X_{n}(K)$.

Let $D^{2} \rightarrow D_{n} \rightarrow S^{2}$ be the fibre bundle with Euler number n.

Proposition

A knot K is \mathbb{Z} / n-shake slice if and only if $S_{n}^{3}(K)$ is homology cobordant to $L(n, 1)$ via a cobordism V with $\pi_{1}(V) \cong \mathbb{Z} / n$, such that $V \cup D_{n} \cong X_{n}(K)$.

Proof.

If K is \mathbb{Z} / n-shake slice then the exterior of the embedded 2-sphere is such a homology cobordism V.

If such a V exists, the image in $X_{n}(K)$ of the zero section of D_{n} is a locally flat 2 -sphere as required.

Proposition

A knot K is \mathbb{Z} / n-shake slice if and only if $S_{n}^{3}(K)$ is homology cobordant to $L(n, 1)$ via a cobordism V with $\pi_{1}(V) \cong \mathbb{Z} / n$, such that $V \cup D_{n} \cong X_{n}(K)$.

Proof.

Steps in the proof of main theorem, only if direction:

- Suppose ($V ; S_{n}^{3}(K), L(n, 1)$) exists as in the Proposition.
- Homology computation with V shows that $H_{1}\left(S_{n}^{3}(K) ; \mathbb{Z}[\mathbb{Z} / n]\right)=0$.
- Let $\xi=e^{2 \pi i / n}$. Use G-signature theorem to show

$$
\sigma_{K}\left(\xi^{k}\right)=\operatorname{sign}\left(Q(\widetilde{W})_{k}\right)-\operatorname{sign}\left(Q_{W}\right)
$$

where $Q(\widetilde{W})_{k}$ is intersection pairing of \mathbb{Z} / n-cover of cobordism ($W^{4} ; S_{n}^{3}(K), L(n, 1)$), restricted to ξ^{k}-eigenspace: use $W=V$ to see $\sigma_{K}\left(\xi^{k}\right)=0$.

Proof.

Steps in the proof of main theorem, only if direction:

- The Arf invariant obstructs the existence of a bordism $\left(V ; S_{n}^{3}(K), L(n, 1)\right)$ over \mathbb{Z} / n for n even, so $\operatorname{Arf}(K)=0$.
- The Arf invariant of K can be identified with the Kirby-Siebenmann invariant of $V \cup D_{n}$ when is n odd. $V \cup D_{n} \cong X_{n}(K)$ smooth implies $\mathrm{ks}\left(X_{n}(K)\right)=0$.

Proof.

Steps in the proof of main theorem, if direction:

- Use bordism theory and $\operatorname{Arf}(K)=0$ (n even) to construct a degree one normal bordism

$$
F:\left(W ; S_{n}^{3}(K), L(n, 1)\right) \rightarrow(L(n, 1) \times I ; L(n, 1), L(n, 1))
$$

- $H_{1}\left(S_{n}^{3}(K) ; \mathbb{Z}[\mathbb{Z} / n]\right)=0$ implies $Q(\widetilde{W})$ determined an element of $L_{4}^{s}(\mathbb{Z}[\mathbb{Z} / n])$, simple surgery obstruction group $=$ Witt group of quadratic forms.
- $L_{4}^{s}(\mathbb{Z}[\mathbb{Z} / n]) \cong \mathbb{Z}^{r(n)}$ where

$$
r(n)= \begin{cases}(n+1) / 2 & n \text { odd } \\ (n+2) / 2 & n \text { even }\end{cases}
$$

These \mathbb{Z} summands are identified with $\sigma_{\xi^{k}}(K)$, so vanish.

Proof.

Steps in the proof of main theorem, if direction:

- Perform surgery on $W: \mathbb{Z} / n$ is a good group, represent ker $\pi_{2}(F)$ by locally flat embedded S^{2} s. $\mathrm{cl}\left(W \backslash S^{2} \times D^{2}\right) \cup D^{3} \times S^{1}$.
- Obtain homology cobordism $\left(V ; S_{n}^{3}(K), L(n, 1)\right)$ with $\pi_{1}(V) \cong \mathbb{Z} / n$.
- $V \cup D_{n} \cong X_{n}(K)$ by Boyer's classification if n even, and the same holds for n odd if and only if $\mathrm{ks}\left(V \cup D_{n}\right)=0$. But $\operatorname{ks}\left(V \cup D_{n}\right)=\operatorname{Arf}(K)=0$.
- Zero section of D_{n} maps to locally flat embedded S^{2} as required.

Corollary (FMNOPR)

For every $n \neq 0$ there exist infinitely many knots that are n-shake slice but not slice. These knots may be chosen to be distinct in concordance.

Proof.
The knots $K_{n, j}:=C_{n, 1}\left(T_{2,8 j+1}\right)$ are all \mathbb{Z} / n-shake slice by our theorem, since for every ω with $\omega^{n}=1$:

$$
\sigma_{\omega}\left(C_{n, 1}\left(J_{j}\right)\right)=\sigma_{\omega^{n}}\left(J_{j}\right)=\sigma_{1}\left(J_{j}\right)=0
$$

$$
\Delta_{C_{n, 1}\left(J_{j}\right)}(\omega)=\Delta_{J_{j}}\left(\omega^{n}\right)=\Delta_{J_{j}}(1)=1
$$

Also $\operatorname{Arf}\left(C_{n, 1}\left(J_{j}\right)\right)=n \operatorname{Arf}\left(J_{j}\right)$.
With $J_{j}=T_{2,8 j+1}, \operatorname{Arf}\left(J_{j}\right)=0$ so \mathbb{Z} / n-shake slice but signature functions are distinct, so non-slice and mutually non-concordant.

Corollary (FMNOPR)

If m does not divide n then there exist infinitely many knots which are n-shake slice but not m-shake slice. These knots may be chosen to be distinct in concordance.

Proof.

The knots $J_{j}:=C_{n, 1}\left(T_{2,8(N+j)+1}\right)$ work, $j \geq 0$, for N sufficiently large so that $\sigma_{T_{2,8 N+1}}\left(e^{2 \pi i k / q}\right) \neq 0$ for q a prime power dividing m but not n, and $k=1, \ldots, q-1$.

On the other hand:

Corollary (FMNOPR)

If $m \mid n$ and K is \mathbb{Z} / n-shake slice, then K is \mathbb{Z} / m-shake slice.

Some more corollaries:

Corollary (FMNOPR)

For every $n \neq 0$ there exist infinitely many topological concordance classes of knots that are n-shake slice but not smoothly n-shake slice.

Corollary (FMNOPR)

There exist knots that are \mathbb{Z} / n-shake slice for infinitely many $n \in \mathbb{Z}$, but are not slice.

Corollary (FMNOPR)

For each odd $n \in \mathbb{N}$, there exists K such that $S_{n}^{3}(K)$ and $S_{n}^{3}(U)$ are topologically homology cobordant but K is not n-shake slice.

Corollary

A knot is (± 1)-shake slice if and only if it is $\mathbb{Z} / 1$-shake slice. For all other n, there exists an n-shake slice knot that is not \mathbb{Z} / n-shake slice.

Corollary

If a knot K is n-shake slice for some integer n, then it is (± 1)-shake slice.

